primordium
Rising Star
Kurt Gödel rather famously revolutionized mathematics during the 20th century; less famously, he considered himself an heir to figures like Plato and Leibniz, radically arguing against materialism even in the midst of the Vienna Circle.
One of his lectures, "The modern development of the foundations of mathematics in the light of philosophy," was never actually presented, but it is freely available here.
I recommend it in its entirety, but here are some choice excerpts:
One of his lectures, "The modern development of the foundations of mathematics in the light of philosophy," was never actually presented, but it is freely available here.
I recommend it in its entirety, but here are some choice excerpts:
Kurt Gödel said:I believe that the most fruitful principle for gaining an overall view of the possible world-views will be to divide them up according to the degree and the manner of their affinity to or, respectively, turning away from metaphysics (or religion). In this way we immediately obtain a division into two groups: scepticism, materialism and positivism stand on one side, spiritualism, idealism and theology on the other. We also at once see degrees of difference in this sequence, in that scepticism stands even farther away from theology than does materialism, while on the other hand idealism, e.g., in its pantheistic form, is a weakened form of theology in the proper sense.
Kurt Gödel said:Thus one would, for example, say that apriorism belongs in principle on the right and empiricism on the left side. On the other hand, however, there are also such mixed forms as an empiristically grounded theology. Furthermore one sees also that optimism belongs in principle toward the right and pessimism toward the left. For scepticism is certainly a pessimism with regard to knowledge. Moreover, materialism is inclined to regard the world as an unordered and therefore meaningless heap of atoms. In addition, death appears to it to be final and complete annihilation, while, on the other hand, theology and idealism see sense, purpose and reason in everything. On the other hand, Schopenhauer's pessimism is a mixed form, namely a pessimistic idealism. Another example of a theory evidently on the right is that of an objective right and objective aesthetic values, whereas the interpretation of ethics and aesthetics on the basis of custom, upbringing, etc., belongs toward the left.
Kurt Gödel said:Actually, mathematics, by its nature as an a priori science, always has, in and of itself, an inclination toward the right, and, for this reason, has long withstood the spirit of the time [Zeitgeist] that has ruled since the Renaissance; i.e., the empiricist theory of mathematics, such as the one set forth by Mill, did not find much support. Indeed, mathematics has evolved into ever higher abstractions, away from matter and to ever greater clarity in its foundations (e.g., by giving an exact foundation of the infinitesimal calculus and the complex numbers) - thus, away from scepticism.
Kurt Gödel said:If one considers the development of a child, one notices that it proceeds in two directions: it consists on the one hand in experimenting with the objects of the external world and with its own sensory and motor organs, on the other hand in coming to a better and better understanding of language, and that means - as soon - as the child is beyond the most primitive designating of objects - of the basic concepts on which it rests. With respect to the development in this second direction, one can justifiably say that the child passes through states of consciousness of various heights, e.g., one can say that a higher state of consciousness is attained when the child first learns the use of words, and similarly at the moment when for the first time it understands a logical inference.
Now one may view the whole development of empirical science as a systematic and conscious extension of what the child does when it develops in the first direction. The success of this procedure is indeed astonishing and far greater than one would expect a priori: after all, it leads to the entire technological development of recent times. That makes it thus seem quite possible that a systematic and conscious advance in the second direction will also far exceed the expectations one may have a priori.
In fact, one has examples where, even without the application of a systematic and conscious procedure, but entirely by itself, a considerable further development takes place in the second direction, one that transcends "common sense". Namely, it turns out that in the systematic establishment of the axioms of mathematics, new axioms, which do not follow by formal logic from those previously established, again and again become evident. It is not at all excluded by the negative results mentioned earlier that nevertheless every clearly posed mathematical yes-or-no question is solvable in this way. For it is just this becoming evident of more and more new axioms on the basis of the meaning of the primitive notions that a machine cannot imitate.