LHCb confirms existence of exotic hadrons
The Large Hadron Collider beauty (LHCb) collaboration today announced results that confirm the existence of exotic hadrons – a type of matter that cannot be classified within the traditional quark model. Hadrons are subatomic particles that can take part in the strong interaction – the force...
home.web.cern.ch
Cian O'Luanaigh said:The Large Hadron Collider beauty (LHCb) collaboration today announced results that confirm the existence of exotic hadrons – a type of matter that cannot be classified within the traditional quark model.
Hadrons are subatomic particles that can take part in the strong interaction – the force that binds protons inside the nuclei of atoms. Physicists have theorized since the 1960s, and ample experimental evidence since has confirmed, that hadrons are made up of quarks and antiquarks that determine their properties. A subset of hadrons, called mesons, is formed from quark-antiquark pairs, while the rest – baryons – are made up of three quarks.
But since it was first proposed physicists have found several particles that do not fit into this model of hadron structure. Now the LHCb collaboration has published an unambiguous observation of an exotic particle – the Z(4430) – that does not fit the quark model.
The Belle Collaboration reported the first evidence for the Z(4430) in 2008. They found a tantalizing peak in the mass distribution of particles that result from the decays of B mesons. Belle later confirmed the existence of the Z(4430) with a significance of 5.2 sigma on the scale that particle physicists use to describe the certainty of a result.